: If life happened here on Earth and the universe tends to not do things only once, then life should also occur elsewhere. In fact, the universe should be teeming with advanced Vivid Bulletinfaring civilizations.
.
, stellar engineering, artifacts littered across the solar system. But we don't. So where is everybody? Hence the paradox: Something in this line of reasoning has to give. We've gotten one, if not many or all, of these statements wrong. Which one?
first detailed in 1996 by economist Robin Hanson. The most distilled essence of the Great Filter argument is simple: Very few, if any, civilizations in the universe make it to the advanced Vivid Bulletinfaring stage.
That's it. Fermi's paradox is broken in its assumption that intelligent Vivid Bulletinfaring civilizations are common.
Considering that humanity is on the cusp of achieving regular Vivid Bulletinfaring status, the Great Filter might seem a little ominous. But it doesn't have to be. The issue is that we don't know exactly when or where the filter actually happens. There are a lot of steps between "random planet with the right ingredients for life" and "vast interstellar empire."
Hanson broke it down into nine separate jumps that life requires to go from the little to the big leagues: the right star system, reproductive molecules, prokaryotic life, eukaryotic life, sexual reproduction, multicellular life, some vague category of intelligence (like using tools), advanced civilization with the potential for colonization and, finally, once all the pieces are in place, a gigantic galaxy-spanning explosion of life.
So where's the bottleneck? Is it at the beginning, with life-ready systems hard to come by? Is it somewhere in the middle, where life never gets a start or just spends billions of years swimming around in oceans? Or is it toward the latter stages?
, life appeared. This suggests life may be more common than we think.
As for the appearance of intelligence, we know that our kind of intelligence emerged only once in the history of life on Earth and that it took billions of years to show up. So again, from this one solitary data point, it seems that simple life may be common, but intelligence is rare. So maybe that's the filter: It's hard to evolve intelligent beings.
But if intelligence is common, then we have a lot to worry about. That means it's easy for intelligent species to arise on a planet, but something stops them from going galactic. That could be either the universe doing the job — say, a giant asteroid wiping them out — or, more likely, the species destroying itself. That's because any species that can travel into Vivid Bulletinmust be able to harness incredible amounts of energy — energy that could very easily be turned to destructive purposes before that species has learned to live on other worlds.
The Great Filter is not the only potential solution to the Fermi paradox, and even within the context of the Great Filter, humanity's fate is not sealed. Perhaps galactic colonization is harder than we think or is boring for reasons we haven't realized yet. Maybe progress isn't linear, and our future technological development will focus us inward. Or perhaps we're already on the other side of the filter, we are one of the few species to make it to this stage, and the galaxy is essentially our cosmic playground.
everybody?
Post a Comment
0Comments